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The motion of a gas by the normal impact of a high-speed body at the interface between a dense 
half-space and a vacuum is investigated numerically. The motion of the shock wave and the 
shape and distribution of the parameters of the gas dispersing in the vacuum are obtained. 
The motion is studied during the formation of a region with high pressure at the boundary 
with the vacuum of a gas occupying the half-space z > 0. The assumption of cylindrical sym- 
metry relative to the z axis enables this three-dimensional nonsteady-state problem in the 
general case to be solved as a two-dimensional problem. For the corresponding one-dimen- 
sional problem, the numerical solution and, for certain gases also, the analytic solutions are 
well known and are considered in detail in [1]. As a result of solving the two-dimensional 
problem, profiles of the gasdynamic quantities are obtained which are similar to the solu- 
tions in the one-dimensional case and the result of the solution by a self-similar method. The 
cup-shaped surface of the shock wave front with a pressure gradient on it "focusses" the 
dispersing gas so that its velocity component normal to the surface z =0 is greater by an or-  
der of magnitude than the component parallel to the surface of separation of the medium, and 
only at individual points is their ratio close to 0.4. Therefore, the dispersing gas is formed 
into the shape of a "jet", the pressure and density profiles on the axis of which have a shape 
similar to the one-dimensional problem of a brief shock, but in the plane z =0 the pressure 
and density distribiations are similar to the distributions of these quantities in the case of a 
powerful point explosion in an unbounded medium. The initial disturbance in the symmetrical 
problem being considered may be the result of either the normal impact of the body with a 
high velocity at the surface of the dense medium, or the consequence of the effect of a giant 
laser  pulse, or some other process when a certain volume is formed with a high pressure at 
the interface between the dense medium and a vacuum, or with another low-density medium. 

Let us consider the formulation of the problem. Because of the symmetry of the starting conditions 
relative to the z axis, the equations do not contain an angle of rotation around the z axis and the problem is 
solved in the half-space q~ = const with the cylindrical system of coordinates r, r and z. 

To the left of the surface z =0 there is a vacuum and to the right there is a homogeneous, cold, ideal 
gas with pressure p = 0, density p =I, velocity along the z axis u = 0, velocity along the r axis v = 0 and adia- 
batic index T = 1.4. All quantities are dimensionless, so that the gasdy-aamic equations do not contain ad- 
ditional constants. The starting region has the shape of a cylinder of height 2 and diameter 20, the bases of 
which arc parallel to the surface z =0, bisecting it and the axis of the cylinder lies on the z axis (Fig. 1). 
The values p = 0.4, p =1, and u = v = 0 are assigned to the starting region. The boundary of the region at 
various instants of time is shown by curves 0 to 6 (Fig. 1). 

We denote by the letters a and d the points of intersection of the boundary between the negative and 
positive directions of the z axis. On the intercept ad of the z axis, in view of the symmetry of the problem, 
a "wall" condition arises. We denote by the letters b and c the points of intersection of the r axis by the 
boundaries to left and right. For the starting region they coincide, then the point b is displaced above c and 
at the instant be the wall condition arises. The calculation, taking into account perturbations penetrating 
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t h rough  bc ,  showed  the a d v i s a b i l i t y  of th i s  s i m p l i f i c a t i o n  f o r  t he  a c h i e v e d  a c c u r a c y  of the  so lu t ion ,  a s  the  
m a x i m u m  c h a n g e  of the  g a s  p a r a m e t e r s  in the  p e r t u r b e d  r e g i o n  i s  l e s s  than  10%, and in i t s e l f  i s  s m a l l .  T h e  
s e c t i o n  ab b o r d e r s  on the  vacuum,  and cd  on the  co ld ,  d e n s e ,  q u i e s c e n t  gas ,  i . e . ,  p - -0 ,  p = 1, and  u = v = 0. 

The  s y s t e m  of  g a s d y n a m t c  equa t ions  i s  s o l v e d  in the  r e g i o n :  
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w h e r e  the  i n t e r n a l  e n e r g y  e i s  r e l a t e d  with  p and p by the  equat ion  of s t a t e  of an i d e a l  gas  p = ( T - 1 ) p e .  The  
s c h e m e  fo r  Eq. (1) is  f o r m u l a t e d a n d  s o l v e d  n u m e r i c a l l y  by the  me thod  d e s c r i b e d  in [2, 31. 

The  cond i t i on  a t  ab i s  a c h i e v e d  by the  mot ion  of the  edges  of c e l l s  returning to the  vacuum s i d e  wi th  
ve loc i t y  ~ + 2c0 / (3 / -1) ,  w h e r e  w0 is  the  v e l o c i t y  n o r m a l  to the  b o u n d a r y  ab of the  gas  a d j a c e n t  to t he  v a c u u m  
of the  c e l l ,  and c o i s  the  v e l o c i t y  of sound in it. The  p r e s s u r e ,  d e n s i t y  and v e l o c i t y  at  the  b o u n d a r y  i t s e l f  
a r e  a s s u m e d  equal  to z e r o .  

In the  c o n d i t i o n s  at  cd  the  e x t e r n a l  p r e s s u r e  i s  a s s u m e d  to be  not  exactly z e r o ,  bu t  i s  a s s u m e d  a t  
e v e r y  i n s t an t  of the  c a l c u l a t i o n  to b e  equal  to the  p r e s s u r e  at  the  shock  w a v e  f ron t ,  r e d u c e d  by  a f a c t o r  of 
104 which ,  wi th  high a c c u r a c y ,  a p p r o x i m a t e s  an in f in i t e ly  s t r o n g  shock  w a v e  and f a c i l i t a t e s  the  p r o g r a m m i n g  
in c o m p a r i s o n  with an in f in i t e  r a t i o  of the  p r e s s u r e s .  If d e s i r e d ,  a r a t i o  can  be  a s s i g n e d  which i s  g r e a t e r  
by s e v e r a l  o r d e r s ,  but  even wi th  the  c h o s e n  v a l u e s  a c o m p r e s s i o n  in the  shock  w a v e  of a f a c t o r  of 5.96 i s  
ob t a ined ,  wi th  a l i m i t i n g  v a l u e  of 6. 

Let  us c o n s i d e r  a d i f f e r e n c e  s c h e m e .  In p r e p a r i n g  the  s c h e m e  fo r  Eq. (1), i t  i s  t aken  into a c c o un t  
tha t  in c o n t r a s t  f r o m  [3], t he  p r o b l e m  b e i n g  s o l v e d  does  not e m e r g e  f r o m  the s t e a d y - s t a t e  c y c l e .  T h e r e f o r e ,  
w h e r e  n e c e s s a r y ,  a v e r a g i n g  of t he  c e l l  d i m e n s i o n s  i s  c a r r i e d  out  [ o r  a d j a c e n t  i n s t a n t s  of t i m e ,  which p r o v e s  
to be  an a d e q u a t e  m e a s u r e ,  a s  the  m o v e m e n t  of a c e l l  d u r i n g  one t i m e  s t ep  i s  s m a l l ,  and t e r m s  h i g h e r  than 
the  f i r s t  o r d e r  of m a g n i t u d e  of the  c e l l  d i s p l a c e m e n t  can  b e  ne g l e c t e d .  In the c a l c u l a t i o n s ,  a l i m i t  i s  i m -  
posed  on the s t ep  in t i m c ,  in o r d e r  tha t  the  d i s p l a c e m e n t  of the  c e l l  d u r i n g  th i s  s t e p  i s  s m a l l  in c o m p a r i s o n  
wi th  the  s i z e  of the  c e l l .  

The  c h o s e n  ne twork  d i f f e r s  f r o m  [3] in tha t  the  o r i g i n  of the  r a y s  of the  n e t w o r k  i s  on the  r ax i s  and 
not  on the  z a x i s ,  which l eng thens  t he  n u m e r i c a l  f o r m u l a s .  Th i s  c h a n g e  i s  m a d e  fo r  c o n v e n i e n c e  of c a l c u -  
l a t ion  of the p r o b l e m  with r a d i a t i o n  i n c i d e n t  on the  z a x i s .  I t  w a s  found tha t  the  p r o b l e m  of d i s p e r s i o n  in 
vacuo  i s  bad ly  a p p r o x i m a t e d  in a n e t w o r k  with the  o r i g i n s  of the  r a y s  on the  z ax i s .  U n a c c e p t a b l y  l a r g e  
p a r a s i t i c  v e l o c i t i e s  v o r i g i n a t e  d u r i n g  the  f i r s t  s t e p s  in t i m e .  In the  ne tw ork  with o r i g i n s  of the  r a y s  on the  
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r axis ,  this  effect does not a r i s e ,  which shows the impor tance  of the choice  of the type of network for  c a l -  
cula t ing the d i s p e r s i o n  in vacuo. Obviously, the d i f fe rence  is a s s oc i a t e d  with the fact  that high ve loc i t i e s  
occur  dur ing d i s p e r s i o n  and with the or ig in  of the r ays  chosen on the r axis  the motion of the ce l l s  along 
the r ays  takes  p lace  in the  d i rec t ion  of the veloci ty ,  which leads  to b e t t e r  conserva t ion  of energy and m a s s .  
I~ we Substi tute a gas with densi ty  of o r d e r  unity fo r  the vacuum to the left  of ab then, as the ca lcu la t ions  
show, both networks  a r e  equally sui tabIe  fo'r this  problem.  

The d i f fe rence  scheme  is  obta ined by in tegra t ion  of Eq. (1) with r e s p e c t  to the ce l l s ,  so that cons tan t  
a v e r a g e  quant i t ies  a r e  obtained in them and the total  energy,  momentum and m a s s  is  conse rved .  The two-  
d imens iona l  decay of a d iscont inui ty  at  the boundary of the c e l l s  [3] is  ca l cu la t ed  by these  quanti t ies .  The 
methods of ave rag ing  in the c e l l s  on the  z axis  and in those  at a d i s t ance  f rom it  a r e  different .  Suppose that  
the ve loc i ty  v is  p ropor t iona l  to r c l o s e  to the z ax is ,  at which it van ishes  in the c a s e  of the s y m m e t r i c a l  
p roblem.  By averag ing  v ove r  the ce l l  ad jacent  to the axis  with Az = 1 and 5 r  = R, we obtain in the c a s e  of 
cons tant  densi ty  p. and the veloci ty  v va ry ing  l i nea r ly  f rom 0 to V, that the momentum and m a s s  in the cel l  is 

R R 
I rV t~"- I PR~ g = ~ p r d r = p V - - 5 - ,  m = . . p r d r  = 2 ' 
0 O 

whence the a v e r a g e  ve loc i ty  v = g / m  = 2/3V. 

In o r d e r  to ca l cu l a t e  the decay of the  discont inui ty ,  averag ing  should be c a r r i e d  out not over  a c y l i n -  
d r i ca l  ce l l ,  as was done above,  but o v e r  a pa ra l l e lp iped .  Then, 

R R 

i f [  R i g V g -- - - f f - p d r = p V  .-7-, m = 9 d r P R ,  u . . . . .  - . m 2 
0 0 

By averag ing  in the cy l i nd r i ca l  case ,  a value is  obtained fo r  the veloci ty  v at  the boundary of the ce l l  
on the ~. axis ,  which is  h igher  by a f a c t o r  4/3.  When r - the d i a m e t e r  of the ce l l  - is d e c r e a s e d ,  this  effect  
d i s a p p e a r s .  

A s i m i l a r  c o m p a r i s o n  of averaging  fo r  energy g ives  a c o r r e c t i o n  [ ac to r  of 9/8  with v 2 in the e x p r e s -  
sion for  the total  energy.  

Control  ca lcu la t ions  showed that  fo r  the chosen network, the c o r r e c t i o n s  do not s ignif icant ly  improve  
the solution. 

In the c a s e  of s t rong r a r e f a c t i o n  waves,  impac t  is  pos s ib l e  at  the boundary of the ce l l s  in the "fan" of 
the r a r e l a c t i o n  wave [4]. This  would r e q u i r e  re f inement  of the fo rmulas  in [2] for  the decay of the d i scon-  
tinuity. Calcu la t ions  w e r e  c a r r i e d  out to ver i fy  the effect of such re f inement  on the solut ion in the one-  
d imens iona l  and two-d imens iona l  p r o b l e m s  of a b r i e f  shock. Ref inement  was found to be n e c e s s a r y  only in 
the very  r a r e f i e d  region with a low p r e s s u r e  and densi ty  and r emo te  f rom the shock wave. In this  ca se ,  a 
s l ight  improvemen t  of a c c u r a c y  was obse rved  in the one -d imens iona l  p rob lem (the energy was be t t e r  con-  
se rved) ,  but in the two-d imens iona l  c a s e  the changes w e r e  not not iceable ,  in view of the lower  ove r a l l  a c -  
cu racy  of the solution. The re fo re ,  with the chosen law of motion of the network,  r e f inement  of the decay 
f o r m u l a s  was not c a r r i e d  out. 

The bes t  approx imat ion  is  obtained in the c a s e  of motion when the maximum s tab le  s tep in t ime is 
ident ica l  for  a l l  the ce l l s  obta ined [3]. In p rac t i ce ,  the s i ze  of the ce l l  was chosen  on the p r inc ip l e  of equal-  
ity of m a s s  in the ce l l s .  The r e f e r e n c e  region was divided up into subreg ions  with continuous solut ions,  in 
which the d imens ions  of the c e i l s  va r i ed  accord ing  to a law of the type of a g e o m e t r i c a l  p r o g r e s s i o n ,  such 
that the d imens ions  of the c e l l s  of oppos i te  boundar ies  w e r e  i nve r se ly  p ropor t iona l  to the densi ty  in them. 
The sepa ra t ion  Into reg ions  with boundar ies  at s i ngu la r i t i e s  of the solut ion makes  it pos s ib l e  to obtain d i s -  
continuous solut ions accu ra t e ly ,  without approx imat ing  them to continuous functions.  

In one -d imens iona l  p rob l ems ,  the p r o c e s s  of sepa ra t ion  into regions  of continuous solution can be 
au tomated  [5]. In the two-d imens iona l  c a s e ,  th is  is  diff icul t  to achieve  and it is n e c e s s a r y  to ass ign  reg ions  
of s epa ra t i on  in the s t a r t i ng  condi t ions .  

With a p r e s s u r e  o r  veloci ty  jump l e s s  than 0.1, the decay of the d iscont inui ty  is  ca l cu la t ed  by ap -  
p r o x i m a t e  fo rmulas .  In the c o n t r a r y  case ,  i n t e r r a c t i on  was p e r f o r m e d  up to convergence  with an accu racy  
of 0.5%. 
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F i g u r e  i shows the  pos i t ion  at d i f f e r en t  i n s t a n t s  of t ime  of the p e r t u r b a t i o n  boundary  p ropaga t ing  f r o m  
the s t a r t i n g  reg ion  ( r ec t ang le  0). Curves  0-6 c o r r e s p o n d  to t i m e s  t = 0.2, 3.5, 4.8. 6.3, 9.1, and 18.3. C u r v e s  
2 and 4 of the shock wave  f ron t  a r e  omi t ted .  

The a r r o w s  show the ve loc i ty  f ield for  t = 9.1. The dashed  l i ne s  m a r k  the p a s s a g e  of the z c o m p o n e n t  
of the ve loc i ty  u through ze ro  for  c u r v e s  1, 3, and 5. The  boundary  condi t ion  of the wal l  bc on the r axis  
affects  the mot ion  of the point  b. A s e l / - s i m i l a r  so lu t ion  is  obta ined  in [6] fo r  the mot ion  in the v i c in i ty  of 
b, and it is found in p a r t i c u l a r  that  the ang lc  be tween  the r ax is  and the bounda r  3" with the v a c u u m  in it is 
equal  to 27.7 ~ for  T = 1.5. The cha ined  l i n e  is d rawn at an ang le  of 30 ~ to the r axis .  It can  be s een  that  
c u r v e s  1-5 touch it. The  wal l  condi t ion  beg ins  to a p p e a r  in the l a s t  i n s t a n t s  of t ime .  

The  pa r t  of the r e f e r e n c e  r eg ion  fo r  c u r v e s  2-6 ,  which is not loca ted  in Fig .  1, con t a in s  gas  of low 
dens i ty  and p r e s s u r e .  The c o o r d i n a t e  of the point  a of the  i n t e r s e c t i o n  of the bounda ry  of the r eg ion  with 
the nega t ive  d i r e c t i o n  of the z axis  for  c u r v e s  1-6,  is  equal to - 2 1 . 4 ,  - 3 2 ,  - 4 3 . 6 ,  - 5 5 . 5 ,  - 7 1 ,  and - 1 5 6 .  

Below the point  c and to the r igh t  of the r axis  in Fig .  1 t h e r e  is  c o m p r e s s e d  gas with dens i ty  ~ 5, 
and to the left  of the r axis  the re  is a contac t  d i s con t inu i ty  with dens i ty  ~ 0.1. With a qui te  s m a l l  s ize  of the ce l l s ,  
it m u s t  be ca lcu la ted  exact ly .  It is pos s ib l e ,  with ce l l s  which a r e  not ve ry  s m a l l ,  to ob ta in  a good app rox -  
ima t ion  by taking the s i ze s  of the ce l l s  c o r r e s p o n d i n g  to the equat ion for the o p t i m u m  t ime  s tep  for the 
ce l l s  along both s ides  of the d i scon t inu i ty  [3]. 

T h e r e f o r e ,  in o r d e r  to i n c r e a s e  the  a c c u r a c y ,  the ang le  of i nc l i na t i on  of the ad jacen t  r ay  with the r 

axis  was  v a r i e d  d u r i n g  the c a l c u l a t i o n s ,  so that  the o p t i m u m  t i m e  s teps  fo r  c e l l s  to the left  and r ight  of the 
r axis  w e r e  equal.  As a r e s u l t ,  the so lu t ion  changed  only s l ight ly .  F o r  cxample ,  c u r v e s  1-4 (Fig. 1) w e r e  
c a l c u l a t e d  with r e v e r s a l  of the ray .  Then  the p r o b l e m  was  solved with a d i s t r i b u t i o n  of r a y s  f ixed u n i f o r m l y  
with r e s p e c t  to ang le  f r o m  the z axis ,  and a c u r v e  was ob ta ined  which a l m o s t  co inc ided  with 4, and c u r v e s  
5 and 6. 

The  eff ic iency of the ca l cu l a t i on  with r e s p e c t  to expend i tu re  of m a c h i n e  t i m e  in th is  c a s e  va r i ed  by 
m o r e  than a f ac to r  of 2. With r e v e r s a l  of the ray ,  the s i z e  of the ce l l  at the i n t e r s e c t i o n  of the r ay  with the 
r axis  is  d e c r e a s e d ,  which af fec ts  the magn i t ude  of the t i m e  step. A solu t ion  was  ob ta ined  such that  the 
dens i ty  to the r igh t  of the r ax is  d e c r e a s e d  sha rp ly  downwards  f r o m  the point  c and the con tac t  d i s c on t i nu i t y  
is s m a l l  in s i ze  along the r axis .  F o r  example ,  fo r  c u r v e  6 a shif t  downwards  f r o m  the  point  c by 7% of i t s  
d i s t a n c e  to the z axis  g ives  a d e a s i t y r e d u c t i o n b y a f a c t o r  o f l 0 .  The  con tac t  d i s c on t i nu i t y  occup ies  ~ 15 % 
of the a r e a  of the hole  for  the e m i s s i o n  of the ga se s  at  the s u r f a c e  z = 0. The dens i ty  and p r e s s u r e  d i s t r i -  
but ion a long the r axis  when t = 18.3 to the r igh t  of the con tac t  d i s con t inu i ty  is shown by c u r v e s  1-6 in Fig .  
2, w h e r e  a l l  quan t i t i e s  a r e  n o r m a l i z e d  to t h e i r  va lues  a t  the shock wave  f ront .  The  dens i ty  c o i nc i de s  with 
an a c c u r a c y  up to the e r r o r  of the c a l c u l a t i o n  with a p ro f i l e  in the wave  of a point  explos ion in an unbounded 
med ium.  

The p r e s s u r e  d i f f e r s  f r o m  the c a s e  of a point  explos ion  somewhat  mor e ,  but  when r = 0, the graph 
p a s s c s  b e s i d c  the point  fo r  a point  explosion,  which is loca ted  in Fig.  2 by the s m a l l  c i r c l e  on the axis  of 
o rd ina te .  

C u r v e  2 - the p r e s s u r e ,  and c u r v e  5 - the dens i ty ,  a r e  on the z axis  when t > 7.5. F o r  c o m p a r i s o n ,  
F igs .  3 and 4 show the p r e s s u r e s  and d e n s i t i e s  of the o n e - d i m e n s i o n a l  p r o b l e m  when t ~ ~. The  veloci ty  u 
on the  z axis  is  l i n e a r  with r e s p e c t  to z, and p a s s e s  through ze ro  when z = 0.5, i .e . ,  i t  is  s i m i l a r  to the o n e -  
d i m e n s i o n a l  c a se .  
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In Fig .  3, the continuous l ine  shows the change of p r e s -  
su r e  at  the shock-wave f ront  as  a function of the angle  0 b e -  
tween the ray  f rom the or ig in  of the coord ina te s  at  a point of 
the front  and the z axis .  Curves  1, 3, and 6 c o r r e s p o n d  to the 
t imes  2, 4.8, and 18.3; the dashed sect ion is  the p r e s s u r e  at  the 
continuation of the l ine  of the shock f ront  on the r a r e f a c t i o n  
wave adjoining the s ide  z < 0. The na ture  of the p r e s s u r e  buildup 
at  80 ~ is explained by the p r e s e n c e  of carbon  in the s t a r t i ng  r e -  
gion. 

If the rad ius  of the o r ig ina l  c y l i n d r i c a l  region tends to 0% 
then the p rob lem conver t s  to the one -d imens iona l  p roblem.  Its 
solution is  known, but fo r  c o m p a r i s o n  of the r e su l t  by s e l f -  

s i m i l a r i t y  it was ca l cu la t ed  with a one -d imens iona l  va r ia t ion  of this  s a m e  scheme,  and the co r r e spond ing  
cu rves  a r e  plot ted in Fig .  4. At f i r s t ,  the motion of the shock f ront  along the z ax is  is  ident ica l  fo r  both 
p r o b l e m s  and p a s s e s  along c u r v e  2. Then the one -d imens iona l  motion e m e r g e s  on the s t r a igh t  l ine  1 with 
slope 0.6 and the two-d imens iona l  motion e m e r g e s  on the s t ra igh t  l ine  3. The chained l ine  is  plot ted with a 
s lope of 0.4, which c o r r e s p o n d s  to a point explosion in an unbounded medium. Unfortunately,  the accu racy  
of the ca lcu la t ion  is inadequate  fo r  de t e rmin ing  the dependence of the s e l f - s i m i l a r i t y  index on % 

This s ame  p rob lem has bcen solved with the s t a r t i ng  region in the fo rm of a hemisphe re .  The r e su l t s  
d i f fe r  l i t t l e  f rom those  d e m o n s t r a t e d  above. F o r  inves t iga t ing  the s e l f - s i m i l a r  solut ions,  this  in i t ia l  shape  
was found to be l e s s  su i table ,  as the s e l f - s i m i l a r  d i s t r ibu t ion  of the quanti t ies  fo r  it  is  a s c e r t a i n e d  to be 
s e v e r a l  t imes  longe r  than fo r  a thin disk.  

The e r r o r s ,  judging by cont ro l led  to ta ls  for  mass  and energy,  i n c r e a s e d  with t ime,  w e r e  independent 
of the s i ze  reduct ion of the t ime  s tep and amounted to 11 and 15% r e s p e c t i v e l y  when t = 18.3. 

The network cons i s t ed  of 34 r ays  and 21 points on each of them. This,  toge ther  with the p r o g r a m ,  
r equ i r ed  13 memory  shee ts .  The t ime  of ca lcu la t ion  of 100 t ime  s l i c e s  was 4 min. The p r o g r a m  is c o m -  
pi led  in analog,  r e t r a n s m i t t e d  through a "link" s y s t e m  with an a t r a n s l a t o r .  This  gave a c o m p u t e r  t ime  
economy of a f ac to r  of 3.2 in compa r i son  with the usual ALGOL t r a n s l a t o r .  The capab i l i t i e s  of the compu-  
t e r  p e r m i t  the number  of ce l l s  to be i n c r e a s e d  by a f ac to r  of 8, but the ca lcu la t ion  t ime  for  the p rob lem in -  
c r e a s e s  as  the squa re  of the number  of points.  

Curve 6 (Fig. 1), with a s t ab i l i ty  r e s e r v e  of 0.6 in the t ime  s tep and a uniform d i s t r ibu t ion  of r a y s  with 
r e spec t  to angles ,  was obtained at  the 2400th t ime  s tep and ~ 2  h of c o m p u t e r  t ime  w e r e  expended. The use 
of a mobi le  g r id  was found to be effective,  as was a va r i ab l e  s tep in space.  This s a m e  number  of t ime  s teps  
fo r  the one -d imens iona l  p rob lem with a g r id  of 40 ce l l s  enabled the motion of the shock-wave front  to be 
ca lcu la t ed  to d i s t ances  of 2.104 d i a m e t e r s  of the s t a r t i ng  region with an accu racy  of 0.5% and requ i red  5 
min of ca lcula t ion .  

The necess i ty  for  a r e s e r v e  of s tab i l i ty  is conf i rmed  by the following example .  In the ca lcula t ion  of 
the s t a t iona ry  shock wave, r eg ions  1 and 2 of the ca lcu la t ion  a r e  d is t inguished ahead of the wave and behind 
it. The network in them is  uniform. The boundary between the regions  t r a i l s  behind the shock-wave front,  
and in region 1 the quanti t ies  at the boundary with 2 a r e  taken f rom the n e a r e s t  c e l l s  to region 1, as p e r -  
turba t ions  f rom 2 do not pene t r a t e  it. During the ca lcula t ion ,  with the maximum s tab le  s tep At in the in i -  
t ia l ly  unper turbed  region 1, p a r a s i t i c  waves  o r ig ina te  with inc reas ing  ampli tude.  These  waves a r e  not 
obse rved  in the ca lcu la t ion  with a s tab i l i ty  r e s e r v e .  

A s tab i l i ty  c r i t e r i o n  was obtained in [2] for  l i ne a r i z e d  equations.  In the nonl inear  ca se ,  the c r i t e r i o n  
may be violated.  

The authors  thank O. S. Ryzhov fo r  at tention and i n t e r e s t  in the work. 
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